
# СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИОННОГО ЧЕРТЕЖА



# Государственное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЛЕСА»

А. И. Андреев-Твердов, Т. В. Кузнецова

# СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИОННОГО ЧЕРТЕЖА

(Задание Э2.000.000.001)

Рекомендовано к изданию Редакционно-издательским советом университета в качестве учебного пособия для самостоятельной работы студентов

4-е издание



Москва
Издательство Московского государственного университета леса
2008

Рецензент: доцент Г. А. Иванов

Работа подготовлена на кафедре начертательной геометрии и графики

Андреев-Твердов, А. И.

А65 Способы преобразования проекционного чертежа: учеб. пособие / А. И. Андреев-Твердов, Т. В. Кузнецова. — 4-е изд. — М.: ГОУ ВПО МГУЛ, 2008. — 16 с.

Учебное пособие предназначено для студентов всех специальностей. Оно включает теоретические основы способов преобразования проекционного чертежа, а также их практическое применение при работе над эпюром.

УДК 744

### Учебное издание

**Андреев-Твердов** Андрей Игоревич **Кузнецова** Татьяна Васильевна

# СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИОННОГО ЧЕРТЕЖА

(Задание Э2.000.000.001)

Редактор Е. Г. Петрова Компьютерный набор и верстка Т. В. Кузнецовой

По тематическому плану внутривузовских изданий учебной литературы на 2008 г.

Подписано в печать 04.09.2008. Формат 60×90 1/8. Бумага 80 г/м $^2$ . Ризография. Усл. печ. л. 2,0. Тираж 300 экз. Заказ № 477.

Издательство Московского государственного университета леса. 141005, Мытищи-5, Московская обл., 1-я Институтская, 1, МГУЛ. E-mail: izdat@mgul.ac.ru

По вопросам приобретения литературы издательства ГОУ ВПО МГУЛ обращаться в отдел реализации.

Телефон: (498) 687-37-14.

© А.И. Андреев-Твердов, Т.В. Кузнецова, 2000

© ГОУ ВПО МГУЛ, 2008

### 1.Цель и содержание задания

Настоящее учебное пособие включает теоретические основы раздела начертательной геометрии «способы преобразования проекционного чертежа» применительно к заданию Э2.000.000.001, а также исходные данные для тридцати вариантов. В нём приведены практические приёмы решения задач задания, рекомендации по оформлению чертежа и пример его выполнения.

Учебное пособие предназначено для самостоятельной работы студентов всех специальностей.

Цель задания — овладение практическими навыками решения задач и способами преобразования проектировочного чертежа.

Содержание графической части задания:

- 1) по заданным координатам вершин A, B, C, D (таблица приложения 1) построить горизонтальную и фронтальную проекции четырёхгранника и определить видимость рёбер (номер варианта назначает преподаватель);
- 2) способом замены плоскостей проекций определить расстояние от вершины С до плоскости грани ABD;
- 3) определить натуральную величину ребра АВ и угол наклона его для четных вариантов (α) к горизонтальной плоскости проекций, для нечетных (β) к фронтальной плоскости проекций способом вращения вокруг проецирующей прямой;
- 4) определить расстояние от вершины D до ребра AC способом плоскопараллельного перемещения;
- 5) определить натуральную величину грани ВСD способом вращения вокруг прямой (линии) уровня;
- 6) оформить чертеж в соответствии с требованиями ЕСКД и примером в приприложении 2.

Задание необходимо выполнять на формате АЗ (420×297мм).

Перед началом выполнения задания целесообразно изучить по учебнику [1, 2] вопросы:

- 1) многогранники;
- 2) способы замены плоскостей проекций;
- 3) способ вращения вокруг проецирующей прямой;
- 4) способ плоско параллельного перемещения;
- 5) способ вращения вокруг прямой уровня.

# 2. Последовательность выполнения задания

# 2.1. Построение проекций многогранника и определение видимости ребер

Эту часть задания начинают с вычерчивания осей координат. Ось X располагают горизонтально на расстоянии  $(z_{max} + 20)$  мм от верхней границы рамки поля чертежа, где  $z_{max}$ — высота верхней вершины четырехгранника. Оси Y, Z удалены от левой границы рамки на расстояние  $(x_{max}+10)$  мм, где  $x_{max}$  — максимальная координата х одной из четырех вершин многогранника.

В приложении 2 эти построения выполнены для 30-го варианта.

На чертеже проекции многогранника изображают проекциями его сетки. Сетка — это совокупность ребер и вершин многогранника. Для построения фронтальной  $A_2$  и горизонтальной  $A_1$  проекций точки A (приложение 2) от начала координат по оси X откладывают  $X_A$  и строят точку  $A_{12}$ . Через  $A_{12}$  проводят вертикальную линию проекционной связи и на ней, с учетом знака, откладывают от оси X высоту  $Z_A$  и глубину  $Y_A$ .

Аналогично находят проекции остальных вершин. Соединив их проекциями

ребер, получают проекции многогранника.

Определение видимых и невидимых проекций ребер выполняют способом конкурирующих точек. Точка 1 (приложение 2) расположена выше точки 2, поэтому  $A_1C_1$  — видимая,  $B_1D_1$  — невидимая. Фронтальные проекции  $A_2C_2$ ,  $C_2D_2$ ,  $C_2B_2$  — невидимые, т.к. грань ADB ближе к наблюдателю, чем вершина C, о чем можно судить по относительному положению этих элементов на горизонтальной плоскости проекций.

Подробнее с выполнением этого пункта можно ознакомиться в литературном источнике [3].

# 2.2 Определение расстояния от точки до плоскости способом замены плоскостей проекций

Если плоскость ( $\theta$ ) занимает проецирующее положение ( $\theta \perp \pi_1$ ) (рис. 1), то расстояние до нее (CP) от произвольной точки (C) может быть найдено как длина перпендикуляра ( $C_1P_1$ ), опущенного из проекции ( $C_1$ ) этой точки на вырожденную проекцию этой плоскости ( $\Theta_1$ ).

На рис. 1:  $\pi_1$ ;  $\pi_2$  – плоскости проекций;

в (DAB), С – заданные плоскость и точка;

 $\theta_1 \; (B_1 A_1 D_1) - вырожденная проекция плоскости <math>\theta$ ;

С, - проекция точки С;

 $CP_1C_1P_1$  — расстояние от точки C до плоскости  $\theta$  и его проекция;  $C_1P_1$  — проекция CP ( $|CP| = |C_1P_1|$ ).

В этой связи для определения расстояния от точки до плоскости общего положения её нужно перевести в проецирующее положение.

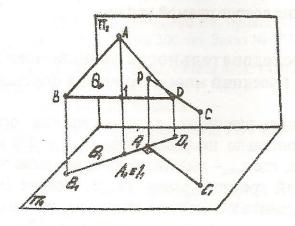



Рис. 1. Расстояние от точки до проецирующей плоскости.

Таким образом, чтобы перевести плоскость общего положения ( $\theta$ ) в проецирующее, надо создать новую систему плоскостей проекций  $\pi_1\pi_4$ . В ней (рис. 2) новая плоскость  $\pi_4$  перпендикулярна к  $\pi_1$  и h, где h горизонталь плоскости  $\theta$  ( $h\subset\theta$ , h  $\|\pi_1$ ) и поэтому  $\theta\perp\pi_4$ и имеет вырожденную в прямую  $A_4B_4D_4$  проекцию  $\theta_4$ .

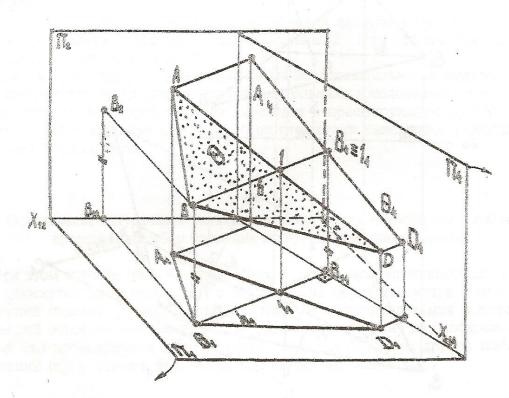



Рис. 2. Перевод плоскости общего положения в проецирующее

Из рис. 2 видно, что горизонтальная проекция горизонтали  $h_1$  перпендикулярна новой оси проекций  $X_{14}$ .

Этот метод преобразования проекционного чертежа называется способом замены плоскостей проекций. Его признаки рассмотрим на приведенном примере (рис. 2):

1) объект (ABD) сохраняет в пространстве неизменное положение;

2) новая система плоскостей проекций ( $\pi_1\pi_4$ ) образована одной «старой» плоскостью проекций ( $\pi_1$ ) и перпендикулярной к ней новой плоскостью проекций ( $\pi_4$ );

3) объект занимает относительно новой плоскости проекций частное положение (или этап замены является промежуточным при переходе к этому положению) ( $\theta \perp \pi_a$ );

4) новые линии проекционной связи перпендикулярны к новой оси проекций (B<sub>1</sub>B<sub>4</sub>LX<sub>14</sub>);

5) одна из координат любой точки объекта остается, при одной замене, постоянной ( $B_{14}B_4=B_{12}B_2$ ).

Для преобразования пространственного изображения на рис. 3 в чертеж плоскость  $\pi_1$  совмещают с плоскостью  $\pi_2$ , вращая её вокруг оси проекций  $X_{12}$ . При этом вращении плоскость  $\pi_4$  сохраняет неизменное положение относительно  $\pi_1$ . Затем поворачивают  $\pi_4$  относительно  $X_{14}$  до совмещения ее с  $\pi_2$ .

Порядок построений на чертеже при определении расстояния от точки до плоскости способом замены плоскостей проекций (рис. 3):

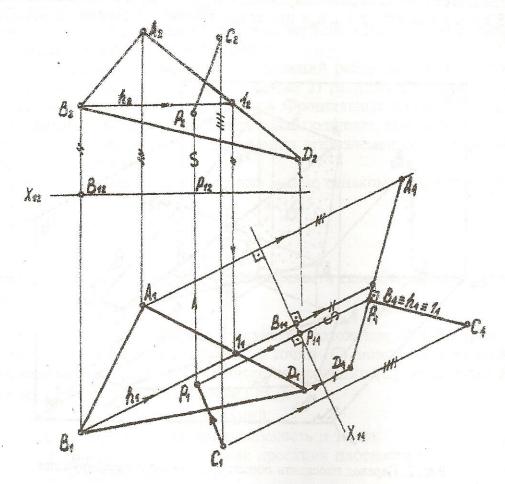



Рис. 3. Определение расстояния от точки до плоскости способом замены плоскостей проекций

1) строят фронтальную проекцию  $h_2$  горизонтали (h)  $(h_2 || X_{12});$ 

2) находят горизонтальную проекцию  $h_1$  горизонтали из условия принадлеж-

ности её точки 1 прямой AD  $(1_1 \in A_1D_1)$ ;

3) в произвольном месте чертежа (добиваясь удачной компоновки) проводят ось проекций  $X_{14}$  новой системы плоскостей проекций  $\mathcal{T}_{0}$  перпендикулярно к  $h_{1}$ . В этом случае плоскость треугольника ABD будет перпендикулярна к  $\pi_{4}$  и спроецируется на неё прямой линией;

4) из горизонтальных проекций вершин треугольника и точки С проводят перпендикулярно к оси  $X_{14}$  линии проекционной связи новой системы плоско-

стей проекций  $(B_1B_{14} X_{14} и т.д.);$ 

5) от оси  $X_{14}$  откладывают высоты точек, измеряя их как отрезки от оси проекций  $X_{12}$  до соответствующих фронтальных проекций ( $[B_{14}B_4]=[B_{12}B_2]$ );

6) соединяют точки  $A_4$ ,  $B_4$  и  $D_4$  (при правильных построениях они должны лечь на одну прямую, и поэтому можно ограничиться нахождением любых двух из трех точек);

7) на прямую  $A_4D_4$  опускают перпендикуляр из точки  $C_4$ . Отрезок  $[C_4P_4]$  –

искомое расстояние;

8) строят горизонтальную проекцию  $P_1$  основания перпендикуляра P. Она лежит в пересечении линии проекционной связи  $P_4P_{14}$  с  $C_1P_1\parallel X_{14}$  (последнее

следует из условий перпендикулярности плоскости  $\triangle$  ABD плоскости  $\pi_4$  и перпендикулярности СР треугольнику ABD, Поэтому СР  $\|\mathcal{T}_4$ , а  $C_1P_1\|X_{14}$ );

9) находят фронтальную проекцию Р<sub>2</sub> на вертикальной линии проекционной связи, откладывая от оси X<sub>1</sub>, высоту точки Р, измеренную на плоскости π<sub>4</sub> (P<sub>1</sub>, P, P).

Построения можно начинать и с проведения фронтали (f) с последующей заменой плоскости проекций  $\pi_1$  (см. приложение 2). При одинаковых исходных данных результат не изменится.

Возможен вариант решения задачи двумя последовательными заменами, первой заменой переводят одну из сторон треугольника в положение прямой уровня, а затем её же второй заменой переводят в проецирующую прямую. Этот прием — более трудоемкий, чертеж (при отсутствии наложения изображений) занимает больше места.

# 2.3 Определение натуральной величины отрезка и угла наклона его к плоскости проекций способом вращения вокруг проецирующей прямой

При этом способе (рис. 4) точки объекта, кроме принадлежащих оси вращения ,движутся по окружностям с центрами на перпендикуляре к плоскости проекций (проецирующей прямой). Направления проецирования и плоскости проекций остаются неизменными. Окружности (n) на одну из плоскостей проекций ( $\pi_2$ ) проецируются в натуральную величину ( $\pi_2$ ), а на другую плоскость проекций ( $\pi_1$ ) — прямой ( $\pi_1$ ), параллельной оси проекций  $\mathbf{X}_{12}$ .

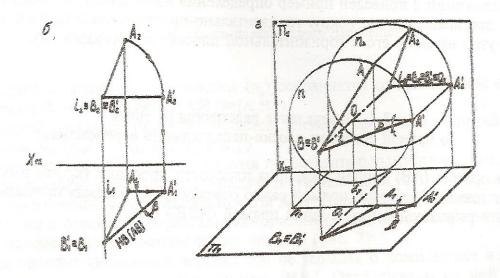



Рис. 4. Определение натуральной величины отрезка и угла наклона его к плоскости проекций способом вращения вокруг проецирующей прямой: а -пространственный рисунок; б -чертеж

Все точки объекта поворачиваются на одинаковый утол и поэтому, после завершения вращения, сохраняется неизменным относительное положение фронтальных проекций точек объекта в примере (рис. 4) (или горизонтальных проекций, если ось вращения перпендикулярна плоскости  $\pi_1$ ).

При определении натуральной величины отрезка AB через его конец — точку В проведена ось вращения і. Она занимает положение фронтально-проецирующей прямой ( $il\pi_2$ ).

Точка В в процессе вращения сохраняет неизменное положение (B≡B'), т.к. она принадлежит оси вращения (i). Точка А перемещается по окружности (n) с

пентром О до А!

Отрезок [A'B'] параллелен горизонтальной плоскости проекций (π<sub>4</sub>) и проецируется на неё в натуральную величину (AB⊨A₁'B₁).

Угол  $\beta$  равен углу наклона прямой AB к фронтальной плоскости проекций. Ось вращения (i) проецируется на фронтальную плоскость проекций точкой  $i_2$ , а на горизонтальную — прямой, перпендикулярной оси проекций  $X_{12}$ .

Последовательность построений на чертеже:

1) через точку  $B_1$  проводим горизонтальную проекцию ( $i_1$ ) оси вращения ( $i_2$ ) перпендикулярно оси проекций. В точке  $B_2$  отмечаем её фронтальную проекцию ( $i_2$ );

2) на фронтальной проекции чертим дугу окружности с центром в  $B_2$  и радиусом  $A_2B_2$  до пересечения её с горизонтальной прямой, проходящей через  $B_2$ . В пересечении построенных прямой и дуги отмечаем точку  $A_2$ , прямая A'B'—

горизонталь;

3) на горизонтальной проекции проводим горизонтальную прямую через точку  $A_i$  до пересечения её с вертикальной линией проекционной связи, выходящей из  $A_2$ . Найденную таким образом точку  $A_i$  соединяем с  $B_i$ , которая совпадает с  $B_i$ 

4) измеряем натуральную величину отрезка [АВ]=[А,'В,'] и угол наклона его

к фронтальной плоскости проекций  $(\beta)$ .

В приложении 2 приведен пример определения натуральной величины отрезка [AB] при вращении его вокруг горизонтально-проецирующей прямой, а также найден угол наклона его к горизонтальной плоскости проекции ( $\alpha$ ).

# 2.4. Определение расстояния от точки до прямой способом плоско-параллельного перемещения

Если прямая (AB) перпендикулярна плоскости проекций  $(\pi_1)$ , то расстояние (СК) от точки (С) до этой прямой равно отрезку ([ $C_1K_1$ ]) между проекцией точки ( $C_1$ ) и вырожденной проекцией прямой ( $A_1$ = $B_1$ ) (рис. 5).

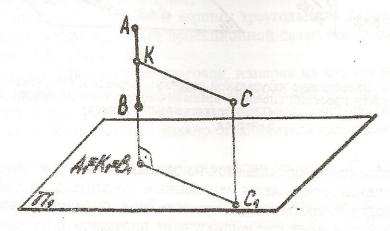



Рис. 5. Расстояние от точки до проецирующей прямой

Если прямая занимает общее положение, то для определения расстояния от точки до прямой, её нужно перевести в положение проецирующей. Это можно сделать способом плоско-параллельного перемещения.

Способ плоско-параллельного перемещения схож со способом вращения вокруг проецирующей прямой. Он предусматривает сохранение направлений проецирования и плоскостей проекций (рис. 6). Все точки перемещаются в плоскостях, параллельных одной из плоскостей проекций. На рис. 6 точка А перемещается в положение А' в плоскости  $\Phi$ , параллельной  $\pi_2$ , а точка В перемещается в В' в плоскости  $\Phi$ ' также параллельной  $\pi_2$ .

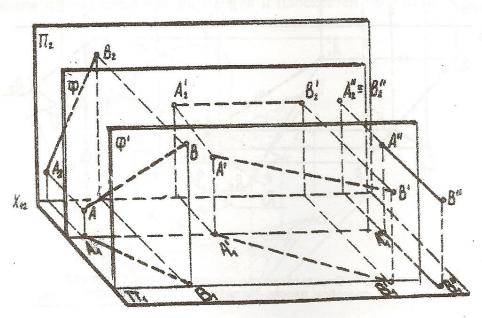



Рис. 6. Способ плоско-параллельного перемещения

На одной из плоскостей проекций ( $\pi_2$ ) сохраняется относительное положение проекций точек объекта ( $[A_2'B_2']=[A_2B_2]$ ).

На другой плоскости проекций остается неизменным удаление проекций то-

чек от оси  $X_{12}$  ( $A_1A_1' \parallel X_{12}$  и  $B_1B_1' \parallel X_{12}$  ).

На рис. 6 прямая AB переведена двумя последовательными плоско-параллельными перемещениями сначала в положение горизонтали A'B', а затем в положение фронтально-проецирующей прямой A''B'' (при втором перемещении точки движутся в плоскости, параллельной горизонтальной плоскости проекций  $\pi_1$ ).

Последовательность построений на чертеже (рис. 7):

1) на произвольном месте чертежа (но не забывая о компоновке изображений) проводим горизонтальную прямую  $A_2'B_2'$ . Откладываем на ней отрезок  $[A_2'B_2]=A_2B_2$  Измеряем отрезки $[A_2C_2]$  и  $[B_2C_2]$  и равными им радиусами  $R_1$  и  $R_2$  чертим дуги окружностей из центров  $A_2'$  и  $B_2'$  соответственно. Пересечение этих двух дуг определит положение точки  $C_2'$ ;

2) из точек  $A_2'$ ,  $B_2'$  и  $C_2'$  проводим линии проекционной связи. Из точек  $A_1$ ,  $B_1$  и  $C_1$  строим прямые, параллельные оси проекций  $X_{12}$ . Для каждой пары прямых (объединенных в пары по принципу прохождения через проекции одной точки) находим их общие точки  $A_1'$ ,  $B_1'$  и  $C_1'$ . Таким образом, мы перевели прямую AB в положение горизонтали, сохранив неизменным относительно нее положение точки  $C_1$ , первым плоско-параллельным перемещением;

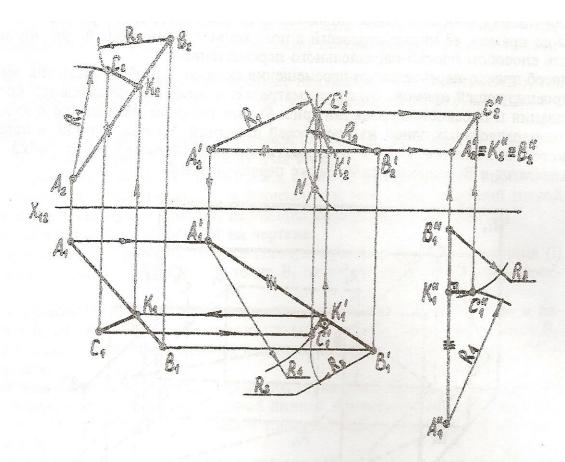



Рис. 7. Определение расстояния от точки до прямой способом плоско-парадлельного перемещения

3) на произвольном месте чертежа проводим вертикальную прямую  $A_i''B_1''$ . Откладываем на ней отрезок  $[A_i''B_1'']=[A_i'B_1'']$ . Относительно него, в пересечении дуг окружностей с радиусами  $R_3=[B_1'C_1']$  и  $R_4=[A_i'C_1']$  и центрами  $B_1''$ и  $A_1''$ , находим точку  $C_1''$ ;

4) из точек  $A_1''$ ,  $B_1''$  (их линии проекционной связи совпадают) и  $C_1''$  проводим линии проекционной связи. Из точек  $A_2'$ ,  $B_2'$  (горизонтальные линии совпадают) и  $C_2'$  строим горизонтальные прямые. В пересечении соответствующих прямых находим точки  $A_2''$ ,  $B_2''$  ( $A_2''$  $\leq B_2''$ ) и  $C_2''$ . Вторым плоско-параллельным перемещением прямая AB переведена во фронтально-проецирующее положение и вместе с ней (при сохранении положения относительно прямой AB) передвинута точка C.

При выполнении построений способом плоско-паралльного перемещения необходимо сохранять относительное положение точек. Например: точка  $C_2$  не должна лежать под прямой  $A_2$  в точке N (хотя, как это видно из чертежа, результат не изменится) — второй точке пересечения построенных дуг.

В приложении 2 приведен пример определения расстояния от вершины D до ребра AC способом плоско-парадлельного перемещения. После первого перемещения ребро AC заняло положение фронтали (A'C'), а после второго горизонтально-проецирующей прямой (A''C'').

# 2.5. Определение натуральной величины плоской фигуры способом вращения вокруг прямой уровня

Плоская фигура проецируется без искажений на плоскость проекций, если она ей параллельна. Фигуру общего положения наиболее рационально переводить в положение, параплельное плоскости проекций, способом вращения вокруг линии уровня. Прямая, параллельная плоскости проекций и принадлежащая заданной плоскости, называется прямой уровня.

Способ вращения вокруг прямой уровня предусматривает (рис. 8) сохранение неизменными направлений проецирования и плоскостей проекций  $(\pi_1; \pi_2)$ .

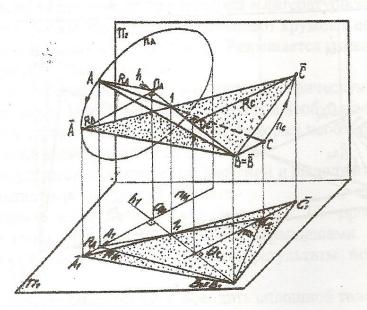



Рис. 8. Способ вращения вокруг прямой уровня

Точки плоской фигуры (А, С...), кроме принадлежащих оси (В,1...), враща-

ются вокруг прямой уровня (h).

Окружности (n<sub>A</sub>; n<sub>C</sub>) траекторий точек (A, C) проецируются в прямые, перпендикулярные проекции прямой уровня  $(n_A 1 h_i; n_C 1 h_i)$  на плоскость проекций  $(\pi_i)$ , парадлельную прямой уровня  $(h \parallel \pi_i)$  (т. к. плоскости окружностей перпендикулярны прямой уровня, а она, в свою очередь параллельна плоскости проекций). На этих прямых располагаются новые проекции точек  $(\bar{A}_1 \in n_{A_1}; \bar{C}_1 \in n_{C_1})$ .

Вращение проводят до совмещения всех точек (А, С...) плоской фигуры с

одной плоскостью уровня проходящей через прямую уровня (h).

В этом случае фигура и ее проекция конгруэнтны, а радиусы проецируются в натуральную величину.

Последовательность построения на чертеже (рис. 9):

1) через  $B_2$  проводим фронтальную проекцию горизонтали ( $h_2 \parallel X_{12}$ ). Строим проекции точки 1 из условия 1∈АС. Через горизонтальную проекцию 1₁ проводим горизонтальную проекцию горизонтали (h<sub>1</sub>);

2) опускаем перпендикуляры из  $A_1$  и  $C_1$  на  $h_1$  и находим их основания  $O_{A_4}$  и

Ocr; 3) на фронтальной проекции прямой уровня (h2), предварительно начертив линии проекционной связи, отмечаем фронтальные проекции  $(O_{A_2},\ O_{C_2})$  центров окружностей;

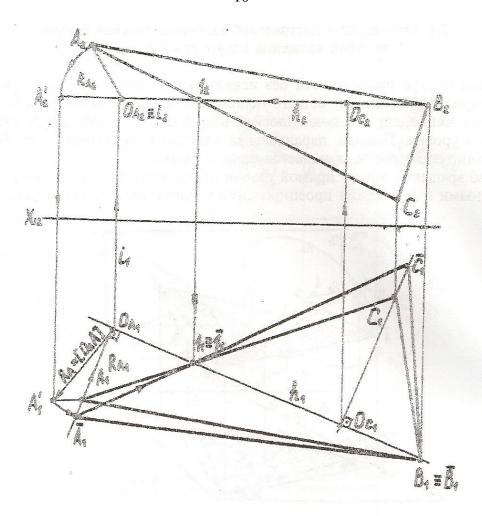



Рис. 9. Определение натуральной величины грани *АВС* способом вращения вокруг прямой уровня

4) определяем натуральную величину радиуса  $R_A$  способом вращения вокруг проецирующей прямой і  $(i_2; i_1) \bot \pi_2$ , переместив его в положение горизонтали. Откладываем его величину на  $O_{A_i}A_1$  от точки  $O_{A_i}$ . Второй конец радиуса задает положение  $A_1$  проекции точки A после завершения поворота;

5) точка \$\bar{B}\_{1}\$, т.к. она принадлежит оси вращения;

6) точка  $\bar{C}_1$  лежит в пересечении перпендикуляров  $O_{c_i}C_1$  и прямой  $\bar{A}_1\bar{1}_1$  ( $\bar{1}_1$  $\equiv 1_1$ ). Точка  $\bar{C}_1\in \bar{A}_1\bar{1}_1$ , т. к.  $\bar{C}\in \bar{A}\bar{1}$ . Возможно построение точки  $C_1$  аналогично  $A_1$ ;

7) соединяем прямыми точки  $\bar{A}_1$ ,  $\bar{C}_1$  и  $\bar{B}_1$ . Построенный треугольник равен натуральной величине грани. Попутно отметим, что все фронтальные проекции точек ( $\bar{A}_2$ ,  $\bar{C}_2$ ...) после завершения вращения расположатся на  $h_2$  (на рис. 9 не показано).

В приложении 2 приведен пример определения натуральной величины грани BCD вращением вокруг фронтали f. Радиусы вращения точек C и D найде-

ны методом прямоугольного треугольника [3].

При выполнении пунктов  $2\div 5$  задания, одним из критериев (необходимым, но не достаточным) правильности построений является условие: проекция не может быть больше натуральной величины (например: на рис. 9  $S_{a\bar{a}_i\bar{a}_i\bar{c}_i} > S_{ba_i\bar{a}_i\bar{c}_i}$ ).

# 3. Оформление чертежа

Основную надпись целесообразно располагать вдоль длинной стороны формата (приложение 2).

В обозначение чертежа входят: порядковый номер эпюра (2), номер варианта (30) и номер чертежа в задании (1). Например, для тридцатого варианта: Э2.030.000.001.

Название чертежа – способы преобразований. В остальном основная надпись не отличается от приведенной в литературном источнике [4].

Около каждой части задания помещают кружок с её порядковым номером рядом с ним ответ (кроме 1). Разрешается изменять последовательность решения задач задания.

Исходные данные для 2-5-го этапов (графическую часть) параллельным переносом воспроизводят в необходимом месте чертежа. При этом строят только те элементы, которые необходимы для решения конкретной задачи данного пункта.

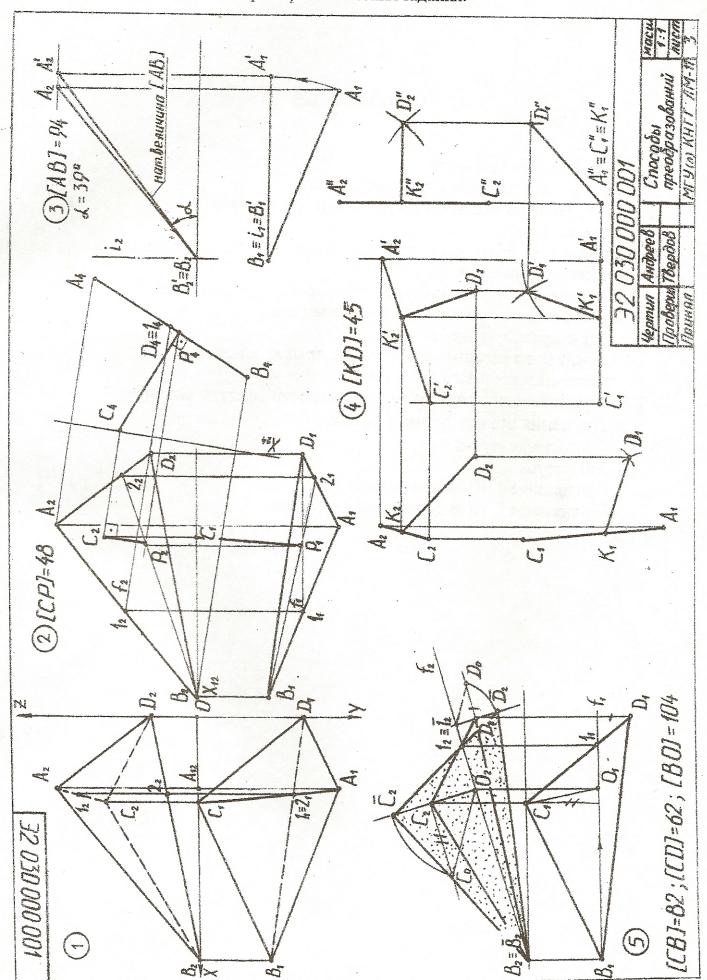
Допускается наложение изображений и выполнение одной или нескольких задач на другом формате.

Задание надо выполнять в масштабе 1:1 простым карандашом, можно выполнять чертеж цветными карандашами. Изменением цвета можно выделить исходные данные, результаты построений и линии построений.

Проекции объектов надо обводить сплошной толстой основной линией (S=0,5-1,4мм), а линии построений — сплошной тонкой линией ( $\frac{1}{2}-\frac{1}{3}S$ ) [5].

Линии построений в объеме, принятом в приложении 2, должны быть сохранены в окончательном варианте.

Надписи должны соответствовать требованиям ЕСКД [6].


# Литература

- 1.Гордон В.О., Семенцов-Огневский М.А. Курс начертательной геометрии.- М.:Наука, 1988. 272 с.
- 2. Поле В.Е., Кувырдин А.Ф., Ермаков А.В., Тихонов В.А., Краткий курс лекций по начертательной геометрии.- М.:МЛТИ, 1980. 32 с. Ч.2.
- 3. Андреев-Твердов А.И., Летина О.С. Пересечение плоскостей: учебное пособие. М.: МГУЛ, 2000. 18с.
- 4. Тихонов В.А., Макурин А.Н., Комаров Н.А. Геометрическое черчение: учебное пособие.- М.: МЛТИ, 1993. 86 с.
  - 5. ЕСКД ГОСТ 2.303 68 «Линии».
  - 6. ЕСКД ГОСТ 2.304 68 «Шрифты чертежные».

12

# ИСХОДНЫЕ ДАННЫЕ

| № варианта        | and was the Control |    |    |     | Koop | Диниты | вершин ч | етырех | гранника |     |    |    |
|-------------------|---------------------|----|----|-----|------|--------|----------|--------|----------|-----|----|----|
|                   | A                   |    |    | В   |      |        | C        |        |          | D   |    |    |
|                   | X                   | Y  | Z  | X   | Y    | Z      | X        | Y      | Z        | X   | Y  | Z  |
| Annual            | 60                  | 60 | 0  | 110 | 0    | 50     | 10       | 0      | 20       | 0   | 50 | 70 |
| 2                 | 100                 | 60 | 50 | 110 | 10   | 20     | 35       | 0      | 70       | 0   | 40 | 0  |
| 2                 | 110                 | 35 | 0  | 40  | 0    | 70     | 0        | 30     | 15       | 30  | 65 | 30 |
| 4                 | 30                  | 60 | 35 | 110 | 30   | 25     | 20       | 0      | 70       | 0   | 35 | 0  |
| 5                 | 45                  | 0  | 65 | 0   | 45   | 10     | 70       | 10     | 0        | 120 | 65 | 50 |
| 5<br>6            | 110                 | 20 | 10 | 0   | 5    | 45     | 45       | 60     | 60       | 25  | 0  | 0  |
| 7                 | 50                  | 70 | 60 | 0   | 0    | 50     | 100      | 10     | 20       | 30  | 60 | 0  |
| 8                 | 40                  | 5  | 65 | 0   | 50   | 10     | 110      | 25     | 0        | 75  | 65 | 50 |
| 9                 | 110                 | 35 | 0  | 60  | 10   | 60     | 0        | 0      | 50       | 25  | 60 | 25 |
| 10                | 20                  | 50 | 45 | 0   | 20   | 0      | 55       | 60     | 10       | 100 | 0  | 60 |
| Proceed<br>Franch | 30                  | 15 | 50 | 10  | 5    | 20     | 70       | 10     | 20       | 50  | 50 | 10 |
| 12                | 50                  | 0  | 0  | 0   | 25   | 15     | 20       | 60     | 40       | 100 | 10 | 60 |
| 13                | 90                  | 60 | 15 | 0   | 20   | 0      | 0        | 40     | 60       | 25  | 0  | 25 |
| 14                | 0                   | 0  | 60 | 110 | 70   | 0      | 25       | 60     | 55       | 0   | 20 | 10 |
| 15                | 50                  | 0  | 55 | 0   | 50   | 10     | 75       | 25     | 0        | 100 | 75 | 50 |
| 16                | 100                 | 35 | 0  | 50  | 30   | 40     | 0        | 0      | 50       | 30  | 75 | 10 |
| 17                | 0                   | 0  | 50 | 100 | 40   | 0      | 25       | 60     | 60       | 0   | 20 | 10 |
| 18                | 0                   | 0  | 60 | 120 | 10   | 0      | 25       | 40     | 80       | 0   | 20 | 10 |
| 19                | 0                   | 60 | 35 | 20  | 20   | 10     | 90       | 40     | 0        | 55  | 0  | 60 |
| 20                | 45                  | 0  | 60 | 0   | 45   | 10     | 70       | 55     | 0        | 100 | 70 | 50 |
| 21                | 100                 | 70 | 0  | 0   | 0    | 60     | 0        | 20     | 10       | 25  | 50 | 25 |
| 22                | 0                   | 50 | 40 | 0   | 30   | 0      | 100      | 60     | 10       | 45  | 0  | 60 |
| 23                | 45                  | 20 | 35 | 25  | 60   | 20     | 0        | 0      | 60       | 90  | 45 | 45 |
| 24                | 30                  | 15 | 60 | 0   | 0    | 20     | 100      | 10     | 20       | 50  | 60 | 0  |
| 25                | 40                  | 60 | 0  | 0   | 20   | 50     | 65       | 0      | 45       | 90  | 50 | 65 |
| 26                | 50                  | 0  | 60 | 100 | 40   | 10     | 15       | 30     | 10       | . 0 | 60 | 35 |
| 27                | 0                   | 0  | 20 | 55  | 10   | 60     | 100      | 60     | 0        | 20  | 45 | 50 |
| 28                | 90                  | 15 | 25 | 50  | 55   | 0      | 30       | 20     | 65       | 0   | 10 | 20 |
| 29                | 90                  | 10 | 20 | 50  | 45   | 0      | 30       | 15     | 75       | 0   | 5  | 40 |
| 30                | 30                  | 60 | 60 | 100 | 30   | 0      | 35       | 0      | 40       | 0   | 45 | 20 |



# СОДЕРЖАНИЕ

| B.   | Цель и содержание задания.                                   | S.A.B |
|------|--------------------------------------------------------------|-------|
| 2.   | Последовательность выполнения задания.                       | 3     |
| 2.1. | Построение проекций многогранника и определение              | 3     |
|      | видимости ребер.                                             |       |
| 2.2. | Определение расстояния от точки до плоскости способом замены |       |
|      | плоскостей проекций.                                         | 4     |
| 2.3. | Определение натуральной величины отрезка и угла наклона      |       |
|      | его к плоскости проекций способом вращения                   |       |
|      | вокруг проецирующей прямой.                                  | 7     |
| 2.4  | . Определение расстояния от точки до прямой способом         |       |
|      | плоско-параллельного перемещения.                            | 8     |
| 2.5  | . Определение натуральной величины плоской фигуры способом   |       |
|      | вращения вокруг прямой уровня.                               |       |
| 3.   | Оформление чертежа.                                          | 13    |
|      | Литература.                                                  | 13    |
|      | Приложение 1. Исходные данные.                               | 13    |
|      | Приложение 2. Пример выполнения задания.                     | 15    |